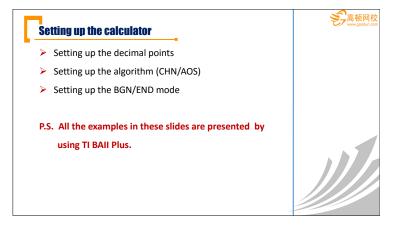

	4	用使功	Ł	
СРТ	计算	PV	现值	
ENTER (SET)	輸入(设置)	РМТ	单个复利周期的cash flow(可用于 计算年金)	
2ND	启用第二项功能	FV	未来值	
CF	进入cash flow的数据输入	٧x	对前一个输入的数值开方	
NPV	进入NPV的计算	x²	对前一个输入的数值平方	
IRR	进入IRR的计算	1/x	对前一个输入的数值求例数	
+	删除	у×	对前面的计算结果进行X次方	
N	复利周期的次数	STO	存储数据	
I/Y	单个复利周期的利率	RCL	调用所存储的数据	
t 4	上下移动	CE/C	数据归零	

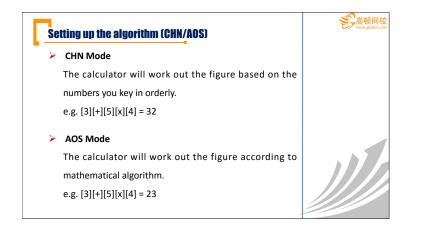
Unders	tanding the function	is of keys o	of your calculator	
	常用血	含酸功能		
2ND + .	可设置计算结果的精确位数 /设置计算法则	2ND + 8	对输入的数据进行统计 分析	
2ND + +/-	重新设置Chn和小数点位数	2ND + 9	可计算Bond的相关数值	
2ND + 0	进入memory中所存储的数 据	2ND + X	计算X! (X的阶乘)	
2ND + 1	进入日期设置	2ND + -	计算排列的数量	
2ND + 2	可计算Nominal rate或 Effective rate	2ND + +	计算组合的数量	
2ND + 3	可计算盈利	2ND + CE/C	清零	
2ND + 4	可计算折旧	2ND + CPT	退回到标准计算器模式	
2ND + 5	可计算百分比变化值	2ND + ENTER	转换设置	
2ND + 6	可计算盈亏平衡点	2ND + PMT	转换BGN和END模式	
2ND + 7	可输入数据	2ND + =	显示上一次的计算结果	

Understand	ing the functions of keys of your calculator	一 www.gaodun
Example 1:		
Calculate (3.	54/2.21) ^{1/4} – 1	
Steps	Display	
[3.54][÷]	3.540000	
[2.21][y ^x]	1.601810	
[4][1/x]	0.250000	
[-][1][=]	0.125001	



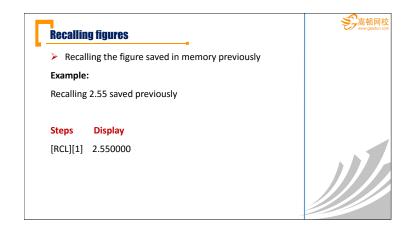
Understandi	ng the functions of keys of your calculator	彩 高顿网校 www.gaodun.com
Example 2:	8 Q	
Calculate $\frac{0}{\sqrt{2}}$	$\frac{89}{.17}$ x (-7.3) ²	
Steps	Display	
[0.89][÷]	0.890000	
[2.17][√x]	1.473092	
[x]	0.604171	
[7.3][+/-][x ²][:	=] 32.196292	

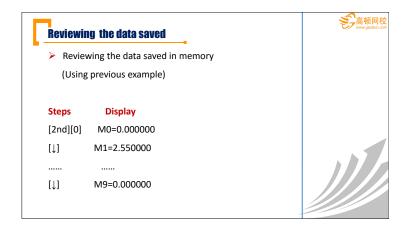
- 01 Introduction
- 02 Setting Up The Calculator
- **03 Memory Functions**
- 04 Time Value of Money
- 05 Capital Budgeting
- 06 Statistics (Standard Deviation)
- 07 Linear Regression and Covariance
- **08 Probabilities**



Setting up the de	cimal points_	彩 高顿网校 www.gacdun.com
Example:		
Setting up to 6 dec	imal points	
Steps	Display	
[2nd][.]	DEC = 2.00	
[6][ENTER]	DEC = 6.000000	
[2nd][CPT]	0.000000	
P.S. We recommer	nd candidates to use up to 6 decimal	
points as it wi	Il meet our accuracy requirements.	

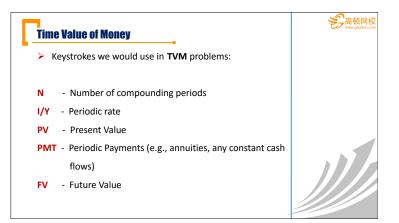
Γ	Setting up the alg	orithm (CHN/AOS)	彩 高顿网校 www.gaodun.com
	Changing from CHN	N to AOS	
	Most students pref	er to use the calculator in AOS mode	
	however the calculation	ator default is CHN.	
	Steps	Display	
	[2nd][.]	DEC = 6.000000	
	[↓]	Chn	
	[2nd][ENTER]	AOS	
	P.S. Should you lil	e to change it back from AOS to CHN	
	just need to pr	r <mark>ess</mark> [2nd][ENTER] <mark>again.</mark>	

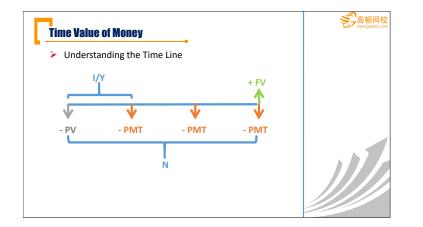

Setting up the	BGN/END mode	彩 高顿网校 www.gaodun.com
	setting of the calculator is END mode.	
Example:		
Setting the cal	culator from END mode to BGN mode	
Steps	Display	
[2nd][PMT]	END	
[2nd][ENTER]	BGN	

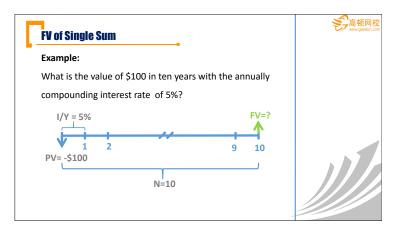


- 01 Introduction
- 02 Setting Up The Calculator
- **03 Memory Functions**
- 04 Time Value of Money
- 05 Capital Budgeting
- 06 Statistics (Standard Deviation)
- 07 Linear Regression and Covariance
- **08 Probabilities**

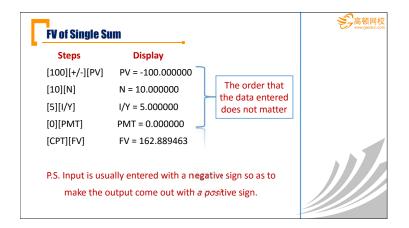
Storing	figures	彩 高顿网校 www.gacdun.com
🕨 🕨 Stori	ing one figure in the memory	
Example	e:	
Storing	2.55 in to memory keystroke 1	
Steps	Display	
[2.55]	2.55	
[STO]	2.55	
[1]	2.550000	
You are	allowed to store up to 10 figures in BAII PLUS	
calculate	or.	

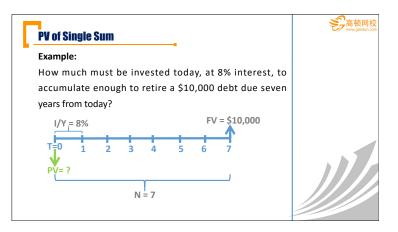


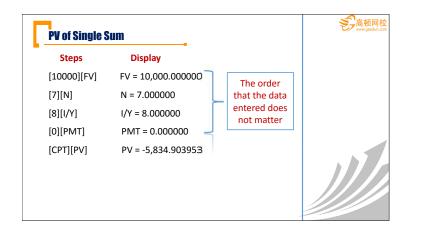


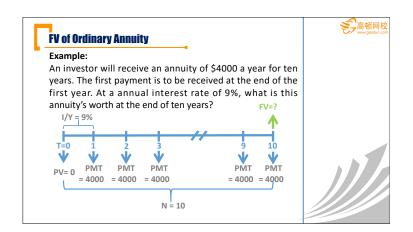


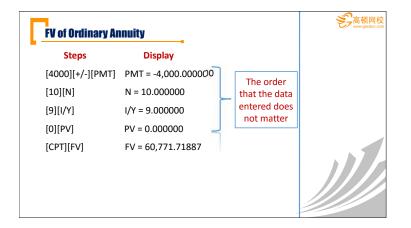
- 01 Introduction
- 02 Setting Up The Calculator
- 03 Memory Functions
- 04 Time Value of Money
- **05 Capital Budgeting**
- 06 Statistics (Standard Deviation)
- 07 Linear Regression and Covariance
- **08 Probabilities**

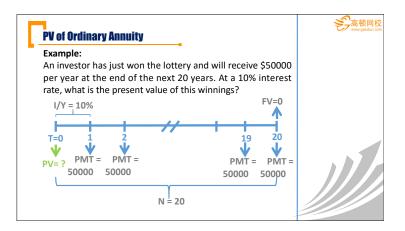


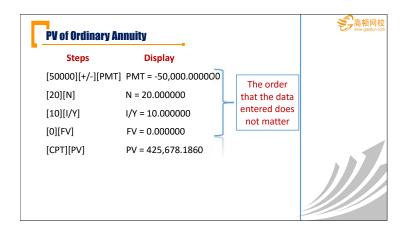


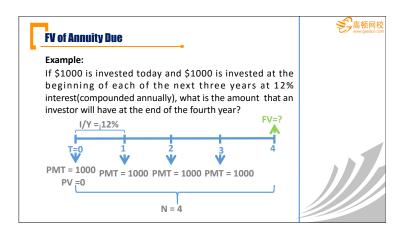


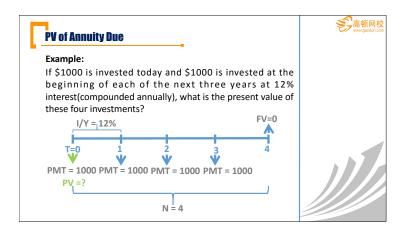




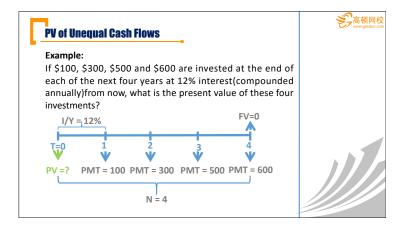


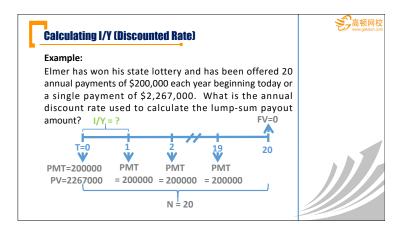






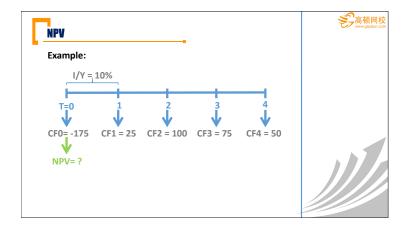
FV of Annuity Due)	いの
1st Method (EN)	- ND Mode)	
Steps	Display	
[1000][+/-][PMT]	PMT = -1,000.000000	
[4][N]	N = 4.000000	
[12][I/Y]	I/Y = 12.000000	
[0][PV]	PV = 0.000000	
[CPT][FV]	FV = 4,779.328000 (at end of year 3)	
[x][1.12][=]	5352.847360 (FV at end of year 4)	


FV of Annuity Due		彩 高顿网 www.gacdu
> 2 nd Method (B		
Steps	Display	
[1000][+/-][PMT]	PMT = -1,000.000000	
[4][N]	N = 4.000000	
[12][I/Y]	I/Y = 12.000000	
[0][PV]	PV = 0.000000	
[CPT][FV]	FV = 5,352.847360 (FV at end of year 4)	

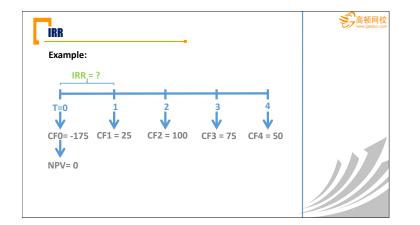

PV of Annuity Du	6	彩 高顿网 www.gaodun.s
> 1 st Method (El	ND Mode)	
Steps	Display	
[1000][+/-][PMT]	PMT = -1,000.000000	
[4][N]	N = 4.000000	
[12][I/Y]	I/Y = 12.000000	
[0][FV]	FV = 0.000000	
[CPT][PV]	PV = 3,037.349347 (T=-1)	
[x][1.12][=]	3,401.831268 (T=0)	

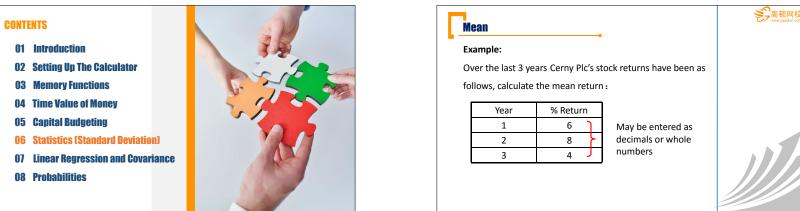
PV of Annuity Du	•	彩 高顿风 www.gaodu
> 2 nd Method (B	GN Mode)	
Steps	Display	
[1000][+/-][PMT]	PMT = -1,000.000000	
[4][N]	N = 4.000000	
[12][I/Y]	I/Y = 12.000000	
[0][FV]	FV = 0.000000	
[CPT][PV]	PV = 3,401.831268 (T=0)	

Steps	Display	
[CF]	CF0 = 0.000000	
[2nd][CE/C]	CF0 = 0.000000 (Clear previous we	orks)
[↓][100][ENTER]	C01 = 100.000000	
[↓][↓][300][ENTER]	C02 = 300.000000	
[↓][↓][500][ENTER]	C03 = 500.000000	
[↓][↓][600][ENTER]	C04 = 600.000000	
[NPV][12][ENTER]	I=12.000000	
[]][CPT]	NPV=1065.644849	



Calculating I/Y (Dis	counted Rate)	ぞ 高顿网校 www.gaodun.com	Calculating N (The Number of Compounding Periods)	彩 高顿网校 www.gaodun.com
We have to switch	h to BGN Mode firstly		Example:	
Steps	Display		If Elmer can choose the amount of his annual payout, based on the same discount rate used above, how many payments	
[200000][+/-][PMT]	PMT = -200,000.000000		of \$232,631 could Elmer receive if his first payment were	
[20][N]	N = 20.000000		today? FV=0	
[2267000][PV]	PV= 2,267,000.000000			
[0][FV]	FV = 0.000000		$\stackrel{T=0}{\mathbf{V}} \stackrel{1}{\mathbf{V}} \stackrel{2}{\mathbf{V}} \stackrel{3}{\mathbf{V}} \stackrel{T=?}{\mathbf{V}}$	
[CPT][I/Y]	I/Y = 7.000768 (7%)		PMT=232631 PMT PMT PMT PV=2267000 = 232631 = 232631 = 232631 N = ?	

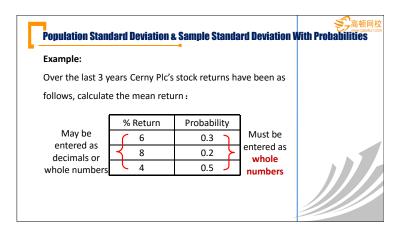

We have to swite	h to BGN Mode firstly	
Steps	Display	
[232631][+/-][PMT]	PMT = -232,631.000000	
[7][I/Y]	I/Y = 7.000000	
[2267000][PV]	PV= 2,267,000.000000	
[0][FV]	FV = 0.000000	
[CPT][N]	N = 14.998877 (N=15)	



NPV		彩 高顿网; www.gaodun.e
Steps	Display	
[CF]	CF0 = 0.000000	
[2nd][CE/C]	CF0 = 0.000000(Clear previous works)	
[175][+/-][ENTER]	CF0 = -175.000000	
[↓][25][ENTER]	C01 = 25.000000	
[↓][↓][100][ENTER]	C02 = 100.000000	
[↓][↓][75][ENTER]	C03 = 75.000000	
[↓][↓][50][ENTER]	C04 = 50.000000	
[NPV][10][ENTER]	I=10.000000	
[↓][CPT]	NPV=20.871184	

	_		彩 高顿网和 www.gaddun.c
	Display		
CF0	= 0.000000		
[CE/C] CF0	= 0.000000 (Clear previo	ous works)	
[+/-][ENTER] CF0	-175.000000		
[ENTER] C01	25.000000		
[100][ENTER] CO2 =	100.000000		
[75][ENTER] C03 =	75.000000		
[50][ENTER] CO4 =	50.000000		
CPT] IRR	= 15.067416		
	- 15.007410	1	

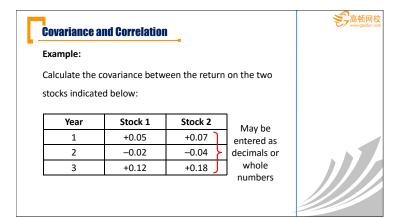
Mean		
Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000(Clear previous works)	
[6][ENTER]	X01 = 6.000000	
[↓][↓][8][ENTER]	X02 = 8.000000	
[↓][↓][4][ENTER]	X03 = 4.000000	
[2nd][8]	Lin	
[2nd][ENTER]-Repe	atedly 1-V (One variable)	
[1][1]	X = 6	


Example:				
Over the last 3	years Cerny Plc's	s stock returns h	ave been as	
follows, calcula	te the mean ret	urn:		
	% Return	Probability	ר	
May be entered as	6	0.3	Must be	
decimals or	4 8	0.2	entered as whole	
whole numbers		0.5	numbers	

Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000 (Clear previous works)	
[6][ENTER]	X01 = 6.000000	
[↓][30][ENTER]	Y01 = 30.000000	
[↓][8][ENTER]	X02 = 8.000000	
[↓][20][ENTER]	Y02 = 20.000000	
[↓][4][ENTER]	X03 = 4.000000	
[↓][50][ENTER]	Y03 = 50.000000	
[2nd][8]	Lin	

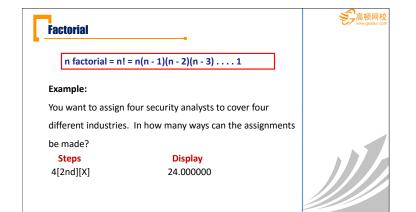
Po	pulation Stand	lard Deviation	& Sample Standard Devia	彩 高顿网校 www.gaodun.com
Ex	ample:			
Ov	ver the last 3 yea	rs Cerny Plc's s	tock returns have been as	
fol	llows, calculate t	he standard de	viation :	
	Year	% Return]	
	1	6	May be entered as	
	2	8 >	decimals or whole	
	3	4 J	numbers	

Population S	andard Deviation & Sample Standard Devia	彩 tion
Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000(Clear previous works)	
[6][ENTER]	X01 = 6.000000	
[↓][↓][8][ENT	R] X02 = 8.000000	
[↓][↓][4][ENT	R] X03 = 4.000000	
[2nd][8]	Lin	
[2nd][ENTER]	Repeatedly 1-V (One variable)	
[↓][↓][↓]	S _x = 2.000000(Sample Standard Deviation)	
[↓]	$\sigma_x = 1.632993$ (Population Standard Deviation)	

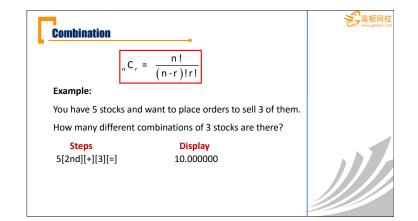


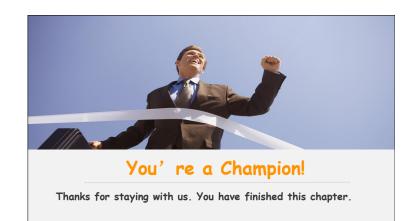
	d Deviation & Sample Standard Deviation V	
Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000(Clear previous works)	
[6][ENTER]	X01 = 6.000000	
[↓][30][ENTER]	Y01 = 30.000000	
[↓][8][ENTER]	X02 = 8.000000	
[↓][20][ENTER]	Y02 = 20.000000	
[↓][4][ENTER]	X03 = 4.000000	
[↓][50][ENTER]	Y03 = 50.000000	
[2nd][8]	Lin	
[2nd][ENTER]-Repe	atedly 1-V (One variable)	
$[\downarrow][\downarrow][\downarrow]$ $S_{x} =$	1.569919(Sample Standard Deviation)	

- 01 Introduction
- 02 Setting Up The Calculator
- **03 Memory Functions**
- 04 Time Value of Money
- 05 Capital Budgeting
- 06 Statistics (Standard Deviation)
- 07 Linear Regression and Covariance
- **08** Probabilities



Covariance and Co	www.gaodun	
Steps	Display	
[2nd][7]	X01 = 0.000000	
[2nd][CE/C]	X01 = 0.000000(Clear previous works)	
[5][ENTER]	X01 = 5.000000	
[↓][7][ENTER]	Y01 = 7.000000	
[↓][2][+/-][ENTER]	X02 = -2.000000	
[↓][4][+/-][ENTER]	Y02 = -4.000000	
[↓][12][ENTER]	X03 = 12.000000	
[↓][18][ENTER]	Y03 = 18.000000	
[2nd][8]	1-V	
[2nd][ENTER]-Repea	tedly Lin	
[↓]	n= 3(number of paired observations)	
[↓]	x = 5(mean value of variable X)	


Covariance and Correlation		www.gabbun.com	CONTENTS
Steps	Display		01 Introduction
[↓]	$S_x = 7.000000$ (sample standard deviation of x)		00 Cotting Up The Oplawlater
[↓]	σ_x = 5.715476(population standard deviation of x)		02 Setting Up The Calculator
[↓]	\overline{y} = 7.000000 (mean value of variable y)		03 Memory Functions
[↓]	S _y = 11.000000 (sample standard deviation of y)		04 Time Value of Money
[↓]	$\sigma_y = 8.981462$ (population standard deviation of y)		05 Capital Budgeting
[↓]	a = -0.857143 (intercept of regression line)		
[↓]	b = 1.571429 (slope of regression line)		06 Statistics (Standard Deviation)
[↓]	r = 1.000000 (sample correlation coefficient)		07 Linear Regression and Covarianc
Cov (x,)	r)=r _{x,y} S _x S _y = 1x7x11=77 (or as decimal 0.0077)		08 Probabilities


は经し

中国首批CFA协会规范备考机构

彩 高顿网校 www.gasdun.com
me. The
ys are there

